nicolas monzon - DISCO RIGIDO 1

INICIO
ENVIARME UN MENSAJE
FORO RAPE
PROGRAMAS IMPORTANTES
MANTENIMIENTO DE LA CPU
100 ERRORES A REPARAR
PIXELES
SERVERS PARA HALF LIFE
CREAR SERVER DE MU ONLINE
TRUCOS DE JUEGOS
CREAR SERVERS ONLINE PARA EL HALF LIFE
MEJORA LOS JUEGOS
CHISTES
CHISTES 2
CHISTES 3
CHISTES DE COMPUTACION
PLANTILLAS PARA PAGINAWEBGRATIS
PRINCE OF PERSIA 3 PARA PARA PLAY STATION
TRUCOS PARA EL TATETI
MORTAL KOMBAT
MORTAL KOMBAT PARTE 2
MI MUGEN
RAP
HACKERS
COMO ARMAR UN CUBO DE RUBIK
JUEGOS DE ZOMBIES
MATEMATICA
COMO USAR MYSPACE
COMO HACER UNA PAGINA WEB
CURSO DE MUGEN 1
CURSO DE MUGEN 2
CURSO DE MUGEN 3
CURSO DE MUGEN 4
CURSO DE MUGEN 5
CURSO DE MUGEN 6
CURSO DE MUGEN 7
CURSO DE MUGEN 8
CURSO DE MUGEN 9
CURSO DE MUGEN 10
CURSO DE MUGEN 11
CURSO DE MUGEN 12
ALT
SERVERS PARA EL COUNTER STRIKE 1.6 PARTE 1
SERVERS PARA EL COUNTER STRIKE 1.6 PARTE 2
SERVERS PARA EL COUNTER STRIKE 1.6 PARTE 3
AGE OF MYTHOLOGY
AGE OF MYTHOLOGY: COMO USARLO
COUNTER STRIKE
MU
DISCO RIGIDO 1
DISCO RIGIDO 2
DISCO RIGIDO 3
PLACA DE VIDEO
IKARIAM 1
IKARIAM 2
IKARIAM 3
IKARIAM 4
IKARIAM 5
GTA VICE CITY
EL JUEGO MAS DIFICIL DEL MUNDO
JUEGOS DIFICILES
JOCJUEGOS



 

INTRODUCCION

Siempre que se enciende el computador, los discos sobre los que se almacenan los datos giran a una gran velocidad (a menos que disminuyan su potencia para ahorrar electricidad).

Los discos duros de hoy, con capacidad de almacenar multigigabytes mantienen el mínimo principio de una cabeza de Lectura/Escritura suspendida sobre una superficie magnética que gira velozmente con precisión microscópica.

Pero hay un aspecto de los discos duros que probablemente permanecerá igual. A diferencia de otros componentes de la PC que obedecen a los comandos del software, el disco duro hace ruidos cuando emprende su trabajo. Estos ruidos son recordatorio de que es uno de los pocos componentes de una PC que tiene carácter mecánico y electrónico al mismo tiempo

Los discos duros pertenecen a la llamada memoria secundaria o almacenamiento secundario. Al disco duro se le conoce con gran cantidad de denominaciones como disco duro, rígido (frente a los discos flexibles o por su fabricación a base de una capa rígida de aluminio), fijo (por su situación en el ordenador de manera permanente). Estas denominaciones aunque son las habituales no son exactas ya que existen discos de iguales prestaciones pero son flexibles, o bien removibles o transportables, u otras marcas diferentes fabricantes de cabezas.

Las capacidades de los discos duros varían desde 10 Mb hasta varios Gb. en minis y grandes ordenadores. Para conectar un disco duro a un ordenador es necesario disponer de una tarjeta controladora. La velocidad de acceso depende en gran parte de la tecnología del propio disco duro y de la tarjeta controladora asociada a los discos duro.

Estos están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central sobre el que se mueven. Para leer y escribir datos en estos platos se usan las cabezas de lectura/escritura que mediante un proceso electromagnético codifican / decodifican la información que han de leer o escribir. La cabeza de lectura/escritura en un disco duro está muy cerca de la superficie, de forma que casi vuela sobre ella, sobre elcolchón de aire formado por su propio movimiento. Debido a esto, están cerrados herméticamente, porque cualquier partícula de polvo puede dañarlos.


 

 

Estructura interna de un disco duro

Un disco duro se compone de muchos elementos; citaremos los más importantes de cara a entender su funcionamiento. En primer lugar, la información se almacena en unos finos platos o discos, generalmente de  aluminio, recubiertos por un material sensible a alteraciones magnéticas. Estos discos, cuyo número varía según la capacidad de la unidad, se encuentran agrupados uno sobre otro y atravesados por un eje, y giran continuamente a gran velocidad.

Asimismo, cada disco posee dos diminutos cabezales de lectura/escritura, uno en cada cara. Estos cabezales se encuentran flotando sobre la superficie del disco sin llegar a tocarlo, a una distancia de unas 3 o 4 micro pulgadas (a título de curiosidad, podemos comentar que el diámetro de un cabello humano es de unas 4.000 micro pulgadas). Estos cabezales generan señales eléctricas que alteran los campos magnéticos del disco, dando forma a la información. (Dependiendo de la dirección hacia donde estén orientadas las partículas, valdrán 0 o valdrán 1).

La distancia entre el cabezal y el plato del disco también determinan la densidad de almacenamiento del mismo, ya que cuanta más cerca estén el uno del otro, más pequeño es el punto magnético y más información podrá albergar.

Tamaño de clúster y espacio disponible

Un clúster se trata de una agrupación de varios sectores para formar una unidad de asignación. Normalmente, el tamaño de clúster en la FAT del DOS o de Windows 95 es de 32 Kb; ¿y qué? Esto no tendría importancia si no fuera porque un clúster es la mínima unidad de lectura o escritura, a nivel lógico, del disco. Es decir, cuando grabamos un archivo, por ejemplo de 10 Kb, estamos empleando un clúster completo, lo que significa que se desperdician 22 Kb de ese clúster. Imaginaos ahora que grabamos 100 ficheros de 10 Kb; perderíamos 100x22 Kb, más de 2 Megas. Por ello, el OSR2 de Windows 95 y Windows 98 implementan una nueva FAT, la FAT 32, que subsana esta limitación, además de otros problemas.

Algunos conceptos

Antes hemos comentado que los discos giran continuamente a gran velocidad; este detalle, la velocidad de rotación, incide directamente en el rendimiento de la unidad, concretamente en el tiempo de acceso. Es el parámetro más usado para medir la velocidad de un disco duro, y lo forman la suma de dos factores: el tiempo medio de búsqueda y la latencia; el primero  es lo que tarde el cabezal en desplazarse a una pista determinada, y el segundo es el tiempo que emplean los datos en pasar por el cabezal.

Si se aumenta la velocidad de rotación, la latencia se reduce; en antiguas unidades era de 3.600 rpm (revoluciones por minuto), lo que daba una latencia de 8,3 milisegundos. La mayoría de los discos duros actuales giran ya a 7.200 rpm, con lo que se obtienen 4,17 Mb de latencia. Y actualmente, existen discos de alta gama aún más rápidos, hasta 10.000 rpm.

Es preciso comentar también la estructura lógica del disco, ya que contiene importantes conceptos que todos habréis oído; para empezar, la superficie del disco se divide en una serie de anillos concéntricos, denominados pistas. Al mismo tiempo, las pistas son divididas en trames de una misma longitud, llamados sectores; normalmente un sector contiene 512 bytes. Otro concepto es el de cilindro, usado para describir las pistas que tienen el mismo número pero en diferentes discos. Finalmente, los sectores suelen agruparse en clúster o unidades de asignación. Estos conceptos son importantes a la hora de instalar y configurar un disco duro, y haremos uso de alguna de esta información cuando subamos al nivel lógico del disco. Muchas placas base modernas detectan los discos duros instalados, mientras que en otras más antiguas hay que meter algunos valores uno por uno (siempre vienen escritos en una etiqueta pegada en la parte superior del disco).

Interfaces: ST506, MFM y RLL

Hasta aquí hemos visto la estructura del disco duro, pero nos falta una pieza vital: la controladora. Es un componente electrónico que gestiona el flujo de datos entre el sistema y el disco, siendo responsable de factores como el formato en que se almacenan los datos, su tasa de transferencia, velocidad, etcétera.

Los primeros discos duros eran gestionados por controladoras ST506, un estándar creado por la conocida empresa Seagate. Dentro de esta norma se implementaron los modos MFM y RLL, dos sistemas para el almacenamiento de datos que, si bien diferentes en su funcionamiento, a nivel físico y externo del disco presentaban la misma apariencia, siendo conocidos de forma genérica en el mundillo como "discos MFM". Estas unidades incluían externamente tres conectores: el primero, y común a cualquier disco duro, es el de alimentación. En los restantes se conectaba un cable de control y un cable de datos, desde el disco a la controladora; el cable de control gestionaba la posición de los cabezales y el de datos transmitía el flujo de información desde y hasta la controladora.

La diferencia entre MFM y RLL es a nivel interno; MFM (Modified Frequency Modulation) y RLL (Run Length Limited) son dos métodos de codificación de la información binaria. RLL permite almacenar un 50% más de datos que el MFM, al aumentar la densidad de almacenamiento. También la trasa de transferencia es superior en RLL, debido al más eficiente método de grabación usado, sin embargo, la velocidad de rotación era la misma en ambos casos: 3600 rpm.

En cualquier caso, la tasa de transferencia de estas unidades no era precisamente como para tirar cohetes: una media de 5 Mbtis por segundo (es decir, medio mega) en MFM y 7.5 Mbtis/s para RLL. Y en cuanto a capacidad, las unidades MFM no solían tener más de 40 Megas, 120 Megas en las RLL

Algunas curiosidades:

El estándar IDE surgió a raíz de un encargo que la firma COMPAQ le hizo a la compañía Western Digital. COMPAQ necesitaba una controladora compatible con el estándar ST506, pero debido a la falta de espacio en el interior de los equipos a los que iba dirigida, ésta debía implementar la circuitería de control en el propio disco duro. Está claro que la necesidad es la madre de la inventiva, ¿verdad?

En antiguos discos duros (sobre todo MFM) era imprescindible, antes de apagar el equipo para moverlo de sitio, ejecutar una utilidad especial para "aparcar" las cabezas de la unidad. Con esta operación se depositaban los cabezales en una zona segura del disco, de forma que no pudieran dañar la superficie del disco en caso de movimientos o vibraciones. En la actualidad este proceso lo realiza la unidad de forma automática al ser desconectada (podéis comprobar cómo al apagar el PC, durante un segundo se ilumina el led del disco duro), y no se concibe un disco duro que no incluya esta característica.

Formatear un disco duro IDE a bajo nivel puede ser perjudicial para el mismo. Durante el proceso, que el fabricante realiza en sus instalaciones antes de sacarlo al público, se graban en él las marcas de direcciones y los números de sector. Volver a realizar este proceso en circunstancias o con software no apropiados, puede dañar definitivamente la unidad, hacerla más lenta o generarle sectores defectuosos e irrecuperables. En realidad, el formateo a bajo nivel sólo está justificado en casos muy concretos, como la aparición progresiva de errores a nivel lógico, y nunca por infección de virus (el caso más frecuente). Ciertamente, algunos vicios de la época MFM son bastante difíciles de ser desterrados...

Algunos modelos de discos duros, de diversos fabricantes, sufrían una anomalía con cierta frecuencia, consistente en la paralización del motor que da giro al eje del disco (especialmente tras varios días de falta de uso del equipo por parte del usuario, o también por acumulación de humedad); el resultado era la imposibilidad de iniciar el sistema desde el disco duro. La solución, no demasiado "científica", por cierto, era sacar el disco y propinarle un par de buenos golpes (no demasiado fuertes, claro); y mano de santo. Lo que no podemos describir aquí es el cambio de color en la cara del dueño del ordenador, al ser testigo de semejante "reparación".

El estándar IDE

“Integrated Drive Electronics”, o IDE, fue creado por la firma Western Digital, curiosamente por encargo de COMPAQ para una nueva gama de ordenadores personales. Su característica más representativa era la implementación de la controladora en el propio disco duro, de ahí su denominación. Desde ese momento, únicamente se necesita una conexión entre el cable IDE y el Bus del sistema, siendo posible implementarla en la placa base (como de hecho ya se hace desde los 486 DX4 PCI) o en tarjeta (equipos 486 VLB e inferiores). Igualmente se eliminó la necesidad de disponer de dos cables separados para control y datos, bastando con un cable de 40 hilos desde el bus al disco duro. Se estableció también el término ATA (AT Attachment) que define una serie de normas a las que deben acogerse los fabricantes de unidades de este tipo.

IDE permite transferencias de 4 Megas por segundo, aunque dispone de varios métodos para realizar estos movimientos de datos, que veremos en el apartado “Modos de Transferencia”. La interfaz IDE supuso la simplificación en el proceso de instalación y configuración de discos duros, y estuvo durante un tiempo a la altura de las exigencias del mercado.

No obstante, no tardaron en ponerse en manifiesto ciertas modificaciones en su diseño. Dos muy importantes eran de capacidad de almacenamiento, de conexión y de ratios de transferencia; en efecto, la tasa de transferencia se iba quedando atrás ante la demanda cada vez mayor de prestaciones por parte del software (¿estás ahí, Windows?). Asimismo, sólo podían coexistir dos unidades IDE en el sistema, y su capacidad (aunque ero no era del todo culpa suya, lo veremos en el apartado “El papel de la BIOS”) no solía exceder de los 528 Megas. Se imponía una mejora, y la llevo a cabo la compañía que la creó.

 

 

 

Enhanced IDE

La interfaz EIDE o IDE mejorado, propuesto también por Western Digital, logra una mejora de flexibilidad y prestaciones. Para empezar, aumenta su capacidad, hasta 8,4 Gigas, y la tasa de transferencia empieza a subir a partir de los 10 Megas por segundo, según el modo de transferencia usado. Además, se implementaron dos sistemas de traducción de los parámetros físicos de la unidad, de forma que se pudiera acceder a superiores capacidades. Estos sistemas, denominados CHS y LBA aportaron ventajas innegables, ya que con mínimas modificaciones (aunque LBA exigía también cambios en la BIOS del PC) se podían acceder a las máximas capacidades permitidas.

Otra mejora del EIDE se reflejó en el número de unidades que podían ser instaladas al mismo tiempo, que se aumentó a cuatro. Para ello se obligó a fabricantes de sistemas y de BIOS a soportar los controladores secundarios (dirección 170h, IRQ 15) siempre presentes en el diseño del PC pero nunca usados hasta el momento, de forma que se pudieran montar una unidad y otra esclava, configuradas como secundarias. Más aún, se habilitó la posibilidad de instalar unidades CD-ROM y de cinta, coexistiendo pacíficamente en el sistema (más sobre esto en el apartado “Otros términos”). A nivel externo, no existen prácticamente diferencias con el anterior IDE, en todo caso un menor tamaño o más bien una superior integración de un mayor número de componentes en el mismo espacio.

Modos de transferencia

 

Los dispositivos IDE pueden transferir información principalmente empleando dos métodos: PIO y DMA; el modo PIO (Programmed I/O) depende del procesador para efectuar el trasiego de datos. A nivel de rendimiento no hay mayor problema, ya que los micros actuales tienen la suficiente capacidad para gestionar estas operaciones y alternarlas con otras, por supuesto. El otro método es el DMA; así la CPU se desentiende de la transferencia, teniendo ésta lugar por mediación de un chip DMA dedicado. Con el IDE original se usaban los modos PIO 1 y 2, que podían llegar a unos 4 Megas por segundo de transferencia; el modo DMA del IDE original no superaba precisamente esa tasa, quedándose en unos 2 o 3 Megas por segundo.

Hay que decir que existe una variante de la transferencia DMA, y es la Bus Máster DMA; esta modalidad aprovecha las ventajas de los chipsets de las placas base, cada vez más optimizados para estas laboras. Además de liberar al procesador, puede obtener por parte de éste un control casi total, de forma que la información sea transferida con la máxima prioridad. Aunque se pueden alcanzar 16 Megas por segundo, la última modalidad Ultra DMA logra llegar a los 33,3 Megas/s, aprovechando las bondades del nuevo chipset TX de Intel. No obstante, para disfrutar de esta técnica es precioso contar con los correspondientes controladores, suministrados normalmente por el fabricante de la correspondiente placa base.

Otros términos

EIDE amplió los modos PIO al 3, y estableció el MultiWord DMA 1; con ello se logró una tasa de 11 o 13 Megas/s, dando lugar al término Fast ATA. Con posterioridad, se definió la norma Fast ATA-2, para identificar aquellos productos que se acogían a los modos PIO 4 y MultiWord DMA 2, que permiten alcanzar un máximo de 16,6 Megas/s. Existe otro método de transferencia propio del Fast ATA, y es la múltiple lectura/escritura; es decir, la capacidad de leer o escribir varios sectores (normalmente hasta 32) en una sola interrupción, lo que permite optimizar la transferencia incluso en buses lentos, como ISA.

Conviene resaltar que las tasas de transferencia citadas se consiguen en el mejor de los casos, y no siempre son sostenidas, es decir, que suelen ser “picos” de transferencia.

Es preciso también abordar en esta introducción a los discos duros otro término muy conocido; ya hemos comentado que EIDE amplió la flexibilidad en el conexionado, permitiendo la coexistencia de discos duros con unidades de cinta y de CD-ROM, usando el estándar IDE. Para ello se ideó la norma ATAPI (ATA Packet Interface), una extensión del protocolo ATA creada con el fin de aportar un único conjunto de registros y mandatos, y de esta forma facilitar la coexistencia de estas unidades. Los dispositivos de este tipo también pueden, por tanto, beneficiarse de todas las ventajas de los modos PIO y DMA.

 

 

 

MODO DE TRANSFERENCIA

MB DE TRANSFERENCIA (PICOS)

PIO 0

2/3 Mb/s

PIO 1 y 2

4 Mb/s

PIO 3

11 Mb/s

PIO 4

16 Mb/s

MultiWord DMA 1

13 Mb/s

MultiWord DMA 2

16,6 Mb/s

Ultra DMA 33

33 Mb/s

Ultra DMA 66

66 Mb/s



Buffer y caché

Prácticamente todos los discos duros incluyen una memoria buffer, en la que almacenan los últimos sectores leídos; ésta, que puede ser desde 2 Kb hasta 512 Kb, es importantísima de cara al rendimiento, e incluso imprescindible para poder mantener altas cotas de transferencia. Se la denomina caché cuando incluyen ciertas características de velocidad; concretamente, los procesos se optimizan cuando el sistema vuelve de una operación de copiado de datos a la unidad sin esperar a que ésta haya finalizado. También utilizan otra técnica diferente consistente en que la unidad informa de la finalización de una operación de escritura en el momento de recibir los datos, antes de comenzar a grabarlos en el disco. De esta manera no se producen estados de espera; tras todo lo comentado hasta este momento, podemos decir, resumiendo, que un caché amplio en un disco duro es absolutamente imprescindible.

Más de 520 Megas... ¿por qué no?

Seguro que muchos de vosotros habéis vivido el caso (o al menos habéis sido testigos de él) de ir a instalar un disco duro de alta capacidad, y encontraros con que de esos 1080 Megas sólo alcanzáis 528 Megas. Se trata de una nefasta limitación, que curiosamente no está impuesta ni por la BIOS (Basic Input/Output System) ni por el estándar IDE (ni por el DOS, como alguna gente piensa); en realidad, viene dada.... ¡por ambos!

La capacidad de un disco duro se mide en tres valores: número de sectores por pista, número de cabezas y número de cilindros (notación CHS); el estándar IDE soporte 65.536 cilindros, 16 cabezas y 255 sectores por pista, lo que nos da una capacidad bestial, alrededor de 137 Gigas.

Por su parte, la BIOS del PC soporta 1.024 cilindros, 255 cabezas y 63 sectores; ya que ambos deben funcionar en conjunción, es el mínimo común denominador de ambos el que marcará la capacidad definitiva, que será de 1.024 cilindros (máximo de la BIOS), 16 cabezas (máximo del IDE) y 63 sectores (máximo de la BIOS), lo que nos va a dar un total de 528 Megas.

Para superar esta traba, la BIOS debe implementar el modo de trabajo conocido como LBA (Logical Block Adreesing), que traduce el esquema CHS a otro de direccionamiento lógico. Esta operación es totalmente transparente al sistema operativo y al software en general, y aporta la evidente ventaja de poseer acceder a todo el espacio disponible del disco duro del ordenador.

Cuando una BIOS no soporta esta técnica, es preciso emularla por software; para ello, el fabricante de la unidad suele poner a disposición del usuario utilidades especiales que, en forma de driver residente, logran engañar al sistema y obtener el mismo efecto que el LBA por BIOS.

La norma SCSI

Hasta el momento hemos estado comentando los estándares ST506, MFM, RLL, IDE y EIDE, pero nos hemos saltado uno que, tan veterano como los anteriores, ha ido evolucionando (hasta hace poco en otros segmentos de mercado) de forma paralela a ellos. Nos referimos, por supuesto, a SCSI; demos un breve paseo por sus características.

La interfaz SCSI (Small Computer System Interface) ha sido tradicionalmente relegada a tareas y entornos de ámbito profesional, en los que prima más el rendimiento, la flexibilidad y la fiabilidad. Para empezar, SCSI es una estructura de bus separada del bus del sistema. De esta forma, evita las limitaciones propias del bus del PC. Además, en su versión más sencilla esta norma permite conectar hasta 7 dispositivos SCSI (serían 8 pero uno de ellos ha de ser la propia controladora) en el equipo; y las ventajas no se reducen al número de periféricos, sino también a su tipo: se puede conectar prácticamente cualquier dispositivo (escáneres, impresoras, CD-ROM, unidades removibles, etc.) siempre que cumplan con esta norma.

Otra enorme ventaja de SCSI es su portabilidad; esto quiere decir que podemos conectar nuestro disco duro o CD-ROM (o lo que sea) a ordenadores Macintosh, Amiga, etc., que empleen también la norma SCSI. Un detalle a resaltar que todos los periféricos SCSI son inteligentes; es decir, cada uno posee su propia ROM donde almacena sus parámetros de funcionamiento. En especial, es la controladora el dispositivo más importante de la cadena SCSI, que al poseer su propia BIOS puede sobrepasar limitaciones de la ROM BIOS del sistema.

Posiblemente lo que hace destacar a SCSI en su rendimiento, bastante superior a IDE al no depender del bus del sistema; no obstante, no todo iban a ser ventajas: SCSI es más caro que IDE, y en la mayoría de las ocasiones, más complejo de configurar, aunque esto último es cada vez menos problemáticos, ya que es preciso resaltar que la norma SCSI también ha evolucionado y mejorado; citaremos a continuación sus diferentes modalidades.

El surtido SCSI

La primera norma, SCSI-1, lograba un máximo de 3 Megas por segundo de transferencia, a una anchura de 8 bits en el bus de datos. La posterior SCSI-2 introdujo mejoras en el control de los dispositivos, inclusión de mejoras de caché y otras, subiendo a 5 Megas de ratio, con la misma anchura de bits que su predecesora. Luego se presentó la variante Fast SCSI-2, que lograba los 10 Megas por segundo, manteniendo esos 8 bits en el bus de datos. El modo Wide se unió después al Fast, resultando el Fast/Wide SCSI-2, con el que se amplió a 16 bits el ancho de banda del bus de datos, lográndose hasta 20 Megas/s de transferencia y permitiendo un soporte de hasta 15 dispositivos en cadena.

Lo último ha sido el Ultra SCSI, con el que se ha conseguido llegar a 40 Megas por segundo a 16 bits y 20 Megas a 8 bits, aunque no debemos pasar por alto la inclusión de la norma SCAM (SCSI Configured Automatically), al parecido al Plug & Play, que nos libera de la clásica dificultad de configuración de las cadenas SCSI, aunque para ello los dispositivos también deben contemplar el SCAM. Por diversos motivos, SCSI siempre ha sido la alternativa profesional, pero cada vez podemos verla con más frecuencia en el ámbito doméstico; no hay que olvidar que periféricos como unidades Zip o Jaz, magneto-ópticos y escáneres vienen cada vez de forma más frecuente en SCSI, así como el progresivo abaratamiento al que se ven sometidos este tipo de componentes.

 

 

Norma SCSI

Ancho Bus

Megas/segundo

SCSI-1

8 bits

3 Megas/s

SCSI-2

8 bits

5 Megas/s

Fast SCSI-2

8 bits

10 Megas/s

Fast/Wide SCSI-2

16 bits

20 Megas/s

Ultra SCSI

8/16 bits

20/40 Megas/s

Ultra2 SCSI LVD

8/16 bits

40/80 Megas/s

 

Google
I Wanna Be The Flash GameI Wanna Be The Flash Game Super Mario Bros FreeSuper Mario Bros Free Super Mario BomberSuper Mario Bomber Super Mario Star Scramble 2Super Mario Star Scramble 2 Mario Bubble BoomMario Bubble Boom Mario Starcatcher 2Mario Starcatcher 2 Super Mario Star ScrambleSuper Mario Star Scramble Mario Forever FlashMario Forever Flash
Profile Cursors
go fight
waving cartoon
love flower
martial arts
fishing cartoon
moonwalk
simply comic
violent cartoon
the lift
game
comic fishing

www.quedeletras.com
[img]http://www.websmileys.com/sm/aliens/abduct.gif[/img]

Hoy habia 13857 visitantes (26321 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis